## Exercise 62

Find the limits as $x \rightarrow \infty$ and as $x \rightarrow-\infty$. Use this information, together with intercepts, to give a rough sketch of the graph as in Example 12.

$$
y=x^{3}(x+2)^{2}(x-1)
$$

## Solution

To find the $y$-intercept, plug in $x=0$ to the function.

$$
y=(0)^{3}(0+2)^{2}(0-1)=0
$$

Therefore, the $y$-intercept is $(0,0)$. To find the $x$-intercept(s), set $y=0$ and solve the equation for $x$.

$$
\begin{gathered}
x^{3}(x+2)^{2}(x-1)=0 \\
x=0 \quad \text { or } \quad x=-2 \quad \text { or } \quad x=1
\end{gathered}
$$

Therefore, the $x$-intercepts are $(0,0)$ and $(-2,0)$ and $(1,0)$. Calculate the limit of the function as $x \rightarrow \pm \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} y & =\lim _{x \rightarrow \infty} x^{3}(x+2)^{2}(x-1) \\
& =\lim _{x \rightarrow \infty} x^{3} \cdot x^{2}\left(1+\frac{2}{x}\right)^{2} \cdot x\left(1-\frac{1}{x}\right) \\
& =\lim _{x \rightarrow \infty} x^{6}\left(1+\frac{2}{x}\right)^{2}\left(1-\frac{1}{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\left(1+\frac{2}{x}\right)^{2}\left(1-\frac{1}{x}\right)}{\frac{1}{x^{6}}} \\
& =\frac{(1+0)^{2}(1-0)}{0} \\
& =\infty
\end{aligned}
$$

In the second limit, make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} y & =\lim _{u \rightarrow \infty}(-u)^{3}(-u+2)^{2}(-u-1) \\
& =\lim _{u \rightarrow \infty}-u^{3} \cdot u^{2}\left(-1+\frac{2}{u}\right)^{2} \cdot u\left(-1-\frac{1}{u}\right) \\
& =\lim _{u \rightarrow \infty} u^{6}\left(-1+\frac{2}{u}\right)^{2}\left(1+\frac{1}{u}\right) \\
& =\lim _{u \rightarrow \infty} \frac{\left(-1+\frac{2}{u}\right)^{2}\left(1+\frac{1}{u}\right)}{\frac{1}{u^{6}}} \\
& =\frac{(-1+0)^{2}(1+0)}{0} \\
& =\infty
\end{aligned}
$$

Below is a graph of the function versus $x$.


